Search results for "Metabolic Model"
showing 10 items of 11 documents
Boosting Biomass Quantity and Quality by Improved Mixotrophic Culture of the Diatom Phaeodactylum tricornutum
2021
Diatoms are photoautotrophic unicellular algae and are among the most abundant, adaptable, and diverse marine phytoplankton. They are extremely interesting not only for their ecological role but also as potential feedstocks for sustainable biofuels and high-value commodities such as omega fatty acids, because of their capacity to accumulate lipids. However, the cultivation of microalgae on an industrial scale requires higher cell densities and lipid accumulation than those found in nature to make the process economically viable. One of the known ways to induce lipid accumulation in Phaeodactylum tricornutum is nitrogen deprivation, which comes at the expense of growth inhibition and lower c…
EFMviz
2020
Elementary Flux Modes (EFMs) are a tool for constraint-based modeling and metabolic network analysis. However, systematic and automated visualization of EFMs, capable of integrating various data types is still a challenge. In this study, we developed an extension for the widely adopted COBRA Toolbox, EFMviz, for analysis and graphical visualization of EFMs as networks of reactions, metabolites and genes. The analysis workflow offers a platform for EFM visualization to improve EFM interpretability by connecting COBRA toolbox with the network analysis and visualization software Cytoscape. The biological applicability of EFMviz is demonstrated in two use cases on medium (Escherichia coli, iAF1…
Metabolic complementation in bacterial communities: Necessary conditions and optimality
2016
Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhib…
Determinism and contingency shape metabolic complementation in an endosymbiotic consortium
2017
Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism-which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca. Serratia sym…
FLYCOP: metabolic modeling-based analysis and engineering microbial communities
2018
10 p.-5 fig.-2 tab.
Solving gap metabolites and blocked reactions in genome-scale models: application to the metabolic network of Blattabacterium cuenoti
2013
Abstract Background Metabolic reconstruction is the computational-based process that aims to elucidate the network of metabolites interconnected through reactions catalyzed by activities assigned to one or more genes. Reconstructed models may contain inconsistencies that appear as gap metabolites and blocked reactions. Although automatic methods for solving this problem have been previously developed, there are many situations where manual curation is still needed. Results We introduce a general definition of gap metabolite that allows its detection in a straightforward manner. Moreover, a method for the detection of Unconnected Modules, defined as isolated sets of blocked reactions connect…
In silico exploration of Mycobacterium tuberculosis metabolic networks shows host-associated convergent fluxomic phenotypes
2022
This article belongs to the Special Issue Computational Approaches for the Study of Biomolecular Networks
Modelling the metabolic shift of polyphosphate-accumulating organisms
2014
Enhanced biological phosphorus removal (EBPR) is one of the most important methods of phosphorus removal in municipal wastewater treatment plants, having been described by different modelling approaches. In this process, the PAOs (polyphosphate accumulating organisms) and GAOs (glycogen accumulating organisms) compete for volatile fatty acids uptake under anaerobic conditions. Recent studies have revealed that the metabolic pathways used by PAOs in order to obtain the energy and the reducing power needed for polyhydroxyalkanoates synthesis could change depending on the amount of polyphosphate stored in the cells. The model presented in this paper extends beyond previously developed metaboli…
Sustainable metabolic engineering for sustainability optimisation of industrial biotechnology
2021
Industrial biotechnology represents one of the most innovating and labour-productive industries with an estimated stable economic growth, thus giving space for improvement of the existing and setting up new value chains. In addition, biotechnology has clear environmental advantages over the chemical industry. Still, biotechnology’s environmental contribution is sometimes valued with controversy and societal aspects are frequently ignored. Environmental, economic and societal sustainability of various bioprocesses becomes increasingly important due to the growing understanding about complex and interlinked consequences of different human activities. Neglecting the sustainability issues in th…
Modeling in Microbial Ecology
2014
SPE IPM; International audience; The bases and the principles of modeling in microbial community ecology and biogeochemistry are presented and discussed. Several examples are given. Among them, the fermentation process is largely developed, thus demonstrating how the model allows determining the microbial population growth rate, the death rate, and the maintenance rate. More generally, these models have been used to increase the development of bioenergetic formulations which are presently used in biogeochemical models (Monod, Droop, DEB models). Different types of interactions (competition, predation, and virus–bacteria) are also developed. For each topic, a complete view of the models used…